Tetrahedron 67 (2011) 9715-9718

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Selective functionalization of a resorcin[6]arene

Andriy Tarnovskiy^a, Alexander Shivanyuk^{b,c,*}, Vladimir V. Rozhkov^b

^a The Institute of Organic Chemistry, The National Academy of Science of Ukraine, 5 Murmanska Str., Kyiv, Ukraine ^b The Institute of High Technologies, Kyiv National Taras Shevchenko University, 4 Glushkov St., Kyiv 03187, Ukraine ^c The Institute of Pharmacology and Toxicology, The National Academy of Medical Sciences, 14 Ejen Pottier Str., Kyiv 03680, Ukraine

ARTICLE INFO

Article history: Received 23 June 2011 Received in revised form 22 September 2011 Accepted 10 October 2011 Available online 19 October 2011

Keywords: Resorcin[6]arene Selective functionalization Asymmetric synthesis

1. Introduction

Resorcin[4]arenes $\mathbf{1}^1$ (Fig. 1) are excellent building blocks for rational design of container molecules,² ion receptors,³ selfassembling molecular capsules,⁴ and hollow crystal structures.⁵ Compounds $\mathbf{1}$ are readily available through the thermodynamically controlled acid-catalyzed condensation of resorcinol or its 2substituted derivatives with various aldehydes.⁶ In some cases, the reaction of 2-alkylresorcinol with formaldehyde affords resorcin[5]- and resorcin[6]arenes.⁷ Acid-catalyzed condensation of resorcinol with propionic aldehyde resulted in resorcin[6]arene $\mathbf{2}$ as a minor product (5% yield),⁸ which could be purified by simple crystallization.

Single crystal X-ray analysis revealed that compound **2** has *rtrans-cis-trans-cis-trans* (*r-tctct*) configuration and adopts a S_6 symmetrical wreath-like conformation in which the OH groups do not form intramolecular hydrogen bonds but are solvated by polar solvent molecules (acetone, DMSO). Only one derivative **3** was originally synthesized through the aminomethylation of **2** with *n*dibutylamine and formaldehyde. In the crystalline state, compound **3** has *r-tctct* configuration and adopts a S_6 -symmetrical wreath-like conformation stabilized through O–H···O and N···H–O intramolecular hydrogen bonds.

Regio- and stereoselective aminomethylation of resorcin[4]arenes **1** with primary amines and formaldehyde afforded a number of cyclochiral C_4 -symmetrical tetraoxazine derivatives **4**⁹ possessing extended molecular cavities stabilized by four intramolecular

ABSTRACT

The Mannich-type condensation of hexaethylresorcin[6]arene with achiral primary amines results in S_6 -symmetrical hexadihydro-1,3-oxazine derivatives, which are mesoforms. The reaction with individual enantiomers of α -phenylethylamine leads to C_3 -symmetrical enantiomeric hexaoxazines, which crystallize from reaction mixtures in an analytically pure form.

© 2011 Elsevier Ltd. All rights reserved.

hydrogen bonds. The present research was undertaken in order to develop a method for a regioselective cyclocondensation of resorcin [6]arene **2** with primary amines and formaldehyde.

Reaction of *r*-*tctct* resorcin[6]arene **2** with primary amines and formaldehyde gives hexaoxazines **5** in a 40% yield (Scheme 1). Compounds **5** precipitate from the reaction mixtures and can be easily purified by simple recrystallization. Unlike the parent dodecaol **2**, hexaoxazines **5** are very soluble in nonpolar solvents, such as chloroform, dichloromethane, benzene, toluene, and insoluble in polar DMSO and methanol.

The ¹H NMR spectrum of compound **5a** measured in CDCl₃ at 295 K (500 MHz) contains one set of singlets for the protons of the resorcinol rings and hydroxyl groups, whereas the diastereotopic methylene protons of the oxazine rings emerge as pairs of *AB* doublets at 4.9 ppm (Fig. 2a). The signal centered at 4.1 ppm corresponds to the protons of the methine bridges. It arises as an *ABB*' quartet apparently due to the spin—spin coupling with diastereotopic protons of the adjacent methylene groups. The protons of the OH groups emerge as a sharp singlet at 7.4 ppm. The double doublet with *J*=23.0 Hz at 3.9 ppm appears to be a signal of an *AB* system of the diastereotopic hydrogen atoms of benzyl fragments of the dihydro-1,3-oxazine rings.

This pattern corresponds to S_6 -symmetrical structure **A** (mesoform), in which the methine carbon atoms of the bridges have alternating *R*- and *S*-configurations (Fig. 3). The ¹³C NMR spectrum of compound **4a** contains 14 sharp signals in accordance with the anticipated S_6 -symmetrical structure **A**. Since the aminomethylation with *n*-dibutylamine does not change the conformation of the resorcin[6]arene skeleton it seems very likely that compounds **5** exist in a conformation similar to that of hexamine **3** (Figs. 1 and 3).

^{*} Corresponding author. Tel.: +380 442270889; fax: +380 4453732; e-mail address: a.shivanyuk@gmail.com (A. Shivanyuk).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.10.043

Fig. 1. Structures of compounds 1–4 and a molecular structure of hexaamine 3 in the crystalline state (bottom right). Hydrogen bonds are shown in dashed lines; disordered parts of *n*-butyl chains are omitted for clarity.

The ¹H NMR spectra of compounds **5a** and **5b** are nearly identical to those of tetraoxazines **4a** and **4b**. The protons in the 5-positions of the resorcinol rings emerge at 6.6 and 7.2 ppm for compounds **5** and **4**, respectively, apparently owing to different disposition of the resorcinol rings in the *r*-cccc crown and the *r*-tctct wreath conformations.

Molecular mechanics calculations suggested that the *r*-tctct wreath-like conformation of molecule **5** is likely to be stabilized by six intramolecular OH···O hydrogen bonds. This type of intramolecular hydrogen bonding was observed for resorcin[4]arenes **4** both in the crystalline state and in solution. Accordingly, the protons of the OH groups of compounds **4** and **5** emerge in ¹H NMR spectra as slightly broadened singlets at 7.4–7.45 ppm whose shape and position do not considerably depend on the concentration $(10^{-2}-10^{-3} \text{ M, CDCl}_3)$.

The ¹H NMR spectra of compounds **5c** and **5d** bearing six chiral (*S*) and (*R*)- α -phenyl-ethylamino groups, respectively, are identical and contain a double set of signals for the protons at the 5-positions

of the resorcinol rings and *N*-acetal methylene protons of the dihydro-1,3-oxazine rings (Fig. 2b). The other protons emerge as a complicated set of signals. The ¹³C NMR spectra of **5c** and **5d** contain a double set of sharp signals in 1:1 ratio for all the carbon atoms in keeping with C_3 -symmetrical structure **B** (Fig. 3) whose

Fig. 2. The ¹H NMR spectra (500 MHz, CDCl₃, 295 K) of: (a) 5a; (b) 5c and 5d.

 $(S_6$ symmetry, mesoform)

(C₃symmetry, chiral)

Fig. 3. Energy-minimized structures of compounds **5a**, **b** (A) and **5c**, **d** (B). Time averaged conformations of dihydro-1,3-oxazine rings are shown. Hydrogen bonds are indicated by broken lines.

'asymmetric unit' contains two diastereomeric fragments. Specific optical rotations of compounds **5c** and **5d** are equal in amount and opposite in sign. The above results indicate that dihydro-1,3-oxazines **5c** and **5d** are individual enantiomers.

The HPLC chromatograms of **5c** and **5d** (silica gel, hexane-i-PrOH) were identical and contained one broad signal with retention time 4.6 min. Unfortunately all attempts to analyze compounds **5c** and **5d** on chiral cellulose column have failed (see Experimental part).

The reaction of compound **2** with formaldehyde and racemic α -phenylethylamine gave a 1:1 mixture of compounds **5c** and **5d**. The solution of the product did not rotate the plane of polarized light and had ¹H and ¹³C NMR spectra identical to those of individual enantiomers **5c** and **5d**. These results indicate the remarkable diastereoselectivity of the reaction between **2**, α -phenylethylamine, and formaldehyde.

Compounds **5b** and **5c** were also prepared from compound **2** and the corresponding bisaminol ethers.¹⁰ They were postulated to exist as 1:1 mixtures of enantiomers or diastereoisomers, respectively, differing in a clock- and anti-clockwise orientation of dihydro-1,3-oxazine fragments. It should be noted that the *r*-*ctcctc* wreath-like structures of **5b** and **5c** have only one concerted orientation of the dihydro-1,3-oxazine rings . It is in contrast to *C*₄-symmetrical *rccc* resorcin[4]arenes **4a** and **4c** in which the clock and anti-clockwise orientations of the dihydro-1,3-oxazine rings are enantio- and diastereomeric, respectively.

The regioselective formation of compounds **5** can be explained by intramolecular hydrogen bonding involving six aminomethyl groups in the intermediate hexaminomethylated resorcin[6]arenes (like in hexaamine **3**) that preorganize the amino and hydroxyl groups for the ring closing reaction with formaldehyde to give a concerted orientation of the six dihydro-1,3-oxazine rings.

In conclusion, a Mannich-type aminomethylation of *r*-*tctct* resorcin[6]arenedodecaol **2** with primary amines and formaldehyde results in the formation of the hexadihydro-1,3-oxazine derivatives whose conformations are stabilized by intramolecular hydrogen bonds between hydroxyl groups and oxygen atoms of dihydro-1,3-oxazine rings. This reaction results in complete functionalization of the resorcinol rings at the 5-position and a selective alkylation of six OH-groups. Apparently, this procedure can be used for synthesis of wreath-like *r*-*tctct* resorcin[6]arenes bearing six functional groups attached to the 5-positions or (and) to the oxygen atoms of the resorcinol rings.

2. Experimental part

2.1. General

All reactions were carried out under open atmosphere with no precautions taken to exclude ambient moisture. Melting points measured with a Buchi melting points apparatus are uncorrected. ¹H and ¹³C NMR spectra were measured on a Bruker Avance DRX 500 (500 and 125 MHz, respectively) with TMS as an internal standard. IR spectra were measured on a Vertex 70 spectrometer. HPLC analyses were carried out on Agilent 1100, column EC 125/4.6 Nucleosil 100-5 (Macherey-Nagel), eluent hexane—isopropanol 85:15 v/v. Chiral HPLC analyses were carried out on CHIRALPAK IB 0.46 × 25 cm, cellulose tris (3,5-dimethylphenylcarbamate immobilized on 15 μ silica) eluent hexane—*i*-PrOH (gradient 85:15 up to 70:30).

2.2. General procedure for the synthesis of compounds 5

To a solution of resorcin[6]arene **2** (0.5 g, 0.56 mmol) in ethanol (20 ml), formaldehyde (1 ml, 37% in H₂O, 14 mmol CH₂O) and amine (5 mmol) were added upon stirring. The reaction mixture was stirred for 8 h at ambient temperature, the precipitate was filtered off, washed with ethanol, recrystallized from CH₂Cl₂·MeOH, and dried in vacuo. Yields are not optimized. Analytical data for **5b–d** are consistent with the previously reported data.¹⁰

Compound **5a**: yield 48%. Mp >300 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.39 (s, 6H, OH), 6.53 (s, 6H, CH), 4.90–4.80 (m, 6H, OCH₂N), 4.08 (dd, *J* 9.4 Hz, 6H, CH), 3.89 (dd, *J* 23.0 Hz, 12H, NCH₂), 2.55–2.42 (m, 12H, NCH₂), 2.23–2.09 (m, 6H, CH), 2.00–1.84 (m, 6H, CH), 1.84–1.70 (m, 6H, CH), 0.95–0.84 (m, 36H, CHMe₂), 0.74 (t, *J* 7.5 Hz, 18H, Me). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 149.29, 149.01, 124.24, 122.86, 121.64, 107.83, 83.95, 59.72, 46.51, 34.12, 28.85, 26.76, 20.60, 20.55, 12.71. IR (KBr): 3379.09 (83%), 3072.22 (82%), 2964.42 (68%), 2929.23 (73%), 2670.48 (%), 1971.09 (86%), 1601.05 (75%), 1470.37 (55%). Anal. found %: C, 72.64; H, 8.50; N, 5. 67; anal. calcd for C₉₀H₁₂₆O₁₂N₆%: C, 72.87; H, 8.65; N, 5.52.

Compound **5b**: yield 32%. Mp >300 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.47 (s, 6H, OH), 7.40–7.20 (m, 30H, Ph), 6.55 (m, 6H, CH), 4.87 (s, 12H, OCH₂N), 4.13 (q, *J* 5.0 Hz, 6H, CH), 4.00 (s, 12H, NCH₂), 3.88 (s, 12H, NCH₂Ph), 2.31–2.15 (m, 6H, CH), 2.08–1.93 (m, 6H, CH), 0.82 (t, *J* 7.2 Hz, 18H, Me). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 149.43, 148.79, 137.92, 129.06, 128.54, 127.47, 124.54, 122.94, 121.85, 107.55, 82.13, 55.84, 46.63, 34.20, 28.95, 12.86. Anal. found %: C, 76.72; H, 6.84; N, 4. 98; anal. calcd for C₁₀₈H₁₁₄O₁₂N₆%: C, 76.86; H, 6.76; N, 4.81.

Compounds **5c** and **5d**: yield 40%. Mp 160–163 °C (dec). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.45 (s, 6H, OH), 7.39–7.15 (m, 30H, Ph), 6.59 (s, 3H, CH), 6.52 (s, 3H, CH), 5.03 (d, *J*=9.8 Hz, 6H, OCH₂N), 4.81 and 4.78 (d, *J* 16.2 Hz, 6H, OCH₂N), 4.16–3.84 (m, 24H, CH, NCH₂, CHPh), 2.30–2.12 (m, 6H, CHH), 2.06–1.90 (m, 6H, CHH), 1.42 (m, 18H, Me), 0.87–0.73 (m, 18H, Me). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 149.37, 149.32, 149.34, 144.26, 144.16, 128.56, 128.50, 127.44, 127.32,

127.25, 124.27, 123.13, 122.85, 121.67, 121.50, 107.96, 107.86, 81.05, 80.91, 58.02, 57.99, 44.54, 44.33, 34.19, 28.93, 28.82, 21.72, 21.62, 12.99, 12.90; **5c** $[\alpha]_D^{293K} - 81 \pm 1 (c 0.03, CHCl_3)$. Anal. found %: C, 77.13; H, 6.98; N, 4. 63; anal. calcd for C₁₁₄H₁₂₆O₁₂N₆%: C, 77.28; H, 7.12; N, 4.75. **5d** $[\alpha]_D^{293K} 82 \pm 2 (c 0.03, CHCl_3)$. Anal. found %: C, 77.23; H, 7.04; N, 4, 58; anal. calcd for C₁₁₄H₁₂₆O₁₂N₆%: C, 77.28; H, 7.12; N, 4.75.

3. Molecular mechanics calculations

MMX force field was used as implemented in PCMODEL 7.50.00.¹² Crystallographic coordinates of hexamine **3** were used for generating the initial structures.

References and notes

- 1. Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52, 2663–2704.
- Cram, D. J.; Cram, J. M. Container molecules and their guests In *Monographs in Supramolecular Chemistry*; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1994.
- (a) Boerrigter, H.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. **1997**, 62, 7148–7155; (b) Amrhein, P.; Shivanyuk, A.; Johnson, D. W.; Rebek, J., Jr. J. Am. Chem. Soc. **2002**, 124, 10349–10358; (c) Boerrigter, H.; Grave, L.; Nissink, J. W. M.; Christoffels, L. A. J.; van der Maas, J. H.; Verboom, W.; de Jong, F.; Reinhoudt, D. N. J. Org. Chem. **1998**, 63, 4174–4180.

- (a) Hof, F.; Craig, S. L.; Nuckolls, K.; Rebek, J., Jr. Angew. Chem., Int. Ed. 2002, 41, 1488–1508; (b) Rudkevich, D. M. Bull. Chem. Soc. Jpn. 2002, 75, 393–413.
- (a) MacGillivray, L. R.; Atwood, J. L. J. Am. Chem. Soc. **1997**, *11*9, 6931–6932; (b) MacGillivray, L. R.; Spinney, H. A.; Reid, J. L.; Ripmeester, J. A. Chem. Commun. **2000**, 517–518.
- Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. **1989**, 54, 1305–1312.
- (a) Konishi, H.; Ohata, K.; Morikava, O.; Kobayashi, K. J. Chem. Soc., Chem. Commun. 1995, 309–310; (c) Neumann, C.; Roman, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Keifer, A. E.; Sherman, J. C. Chem.–Eur. J. 2001, 7, 1637–1645; (d) Naumann, C.; Place, S.; Sherman, J. C. J. Am. Chem. Soc. 2002, 124, 16–17.
 (a) Purse, B.; Shivanyuk, A.; Rebek, J., Jr. Chem. Commun. 2002, 2612–2613; (b)
- (a) Purse, B.; Shivanyuk, A.; Rebek, J., Jr. Chem. Commun. 2002, 2612–2613; (b) Brown, P. O.; Enright, G. D.; Ripmeester, G. A. Cryst. Growth Des. 2006, 6, 719–725.
- (a) Matsushita, Y.; Matsui, T. Tetrahedron Lett. 1993, 34, 7433–7437; (b) Arnecke, R.; Böhmer, V.; Paulus, E. F.; Vogt, W. J. Am. Chem. Soc. 1995, 117, 3286–3288; (c) Iwanek, W.; Mathay, J. Lieb. Ann. Chem. 1995, 1463–1469; (d) El Gihani, M. T.; Heaney, H.; Slawin, A. Mz. Tetrahedron Lett. 1995, 36, 4905–4909; (e) Arnecke, R.; Böhmer, V.; Friebe, S.; Gebauer, S.; Krauss, G. J.; Thondorf, I.; Vogt, W. Tetrahedron Lett. 1995, 36, 6221–6224; (f) Airola, K.; Böhmer, V.; Paulus, E. F.; Rissanen, K.; Schmidt, C.; Thondorf, I.; Vogt, W. Tetrahedron 1997, 53, 10709–10724; (g) Luostarinen, M.; Laitinen, T.; Schalley, C. A.; Rissanen, K. Synthesis 2004, 255–262; (h) Szumna, A.; Górski, M.; Lukin, O. Tetrahedron Lett. 2005, 46, 7423–7426.
- Buckley, B. R.; Boxhall, J. Y.; Page, P. C. B.; Chan, Y.; Elsegood, M. R. J.; Heaney, H.; Holmes, K. E.; McIldowie, M. J.; McKee, V.; McGrath, M. J.; Mocerino, M.; Poulton, A. M.; Sampler, E. P.; Skelton, B. W.; White, A. H. *Eur. J. Org. Chem.* **2006**, 22, 5117–5134.
- 11. Page, P. C. B.; Heaney, H.; Sampler, E. P. J. Am. Chem. Soc. 1999, 121, 6751-6752.
- 12. Serena Software, Dr. Kevin E. Gilbert, P.O. 3076, Bloomington, IN 47402.